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An Exact Analysis of Group Velocity for
Propagation Modes in Optical Fibers

KATSUMI MORISHITA, MEMBER, IEEE, YOSHIO OBATA, anp NOBUAKI KUMAGAI, FELLOW, IEEE

Abstract — A method for calculating exactly the group velocity of propa-
gation modes in optical fibers is proposed. In this analysis, optical fibers
can contain uniaxial and dispersive media. The group velocity obtained by
using the scalar approximate analysis is compared numerically with the
rigorous group velocity computed by this method for square-law index
optical fibers. :

1. INTRODUCTION

HE SCALAR approximation method is one of the

most widely used techniques in optical fiber analysis
because of short computing time and simple treatment.
The method, however, has much error in the near cutoff
region [1], [2], and the inaccuracies of group velocity are of

. practical importance for the analysis of pulse broadening,
particularly in optical fibers which have few propagation
modes. A method is needed for calculating exactly the
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group velocity of propagation modes in various optical
fibers. There are several approximate methods giving the
group velocity, i.e., a computational method based on the
WKB theory [3], a method using the scalar finite-element
analysis [4], a practical method using the scalar multilayer
analysis [S], and a method with the vector multilayer
analysis and the integral expression for the group velocity
in the scalar analysis [6]. Kharadly [7] calculated the exact
group velocity of the dielectric-tube waveguides constituted
by three layers without material dispersion. To the authors’
knowledge, however, a practical method giving the exact
group velocity has not yet been proposed. ;

It is the purpose of this paper to describe a method for
computing rigorously the group velocity of propagation
modes in optical fibers without numerical differentiation,
including uniaxial and dispersive material. . The group
velocity is determined by using the vector multilayer ap-
proximation and the integral expression for the group
velocity in vector analysis. The calculated results have only
the error caused by the multilayer approximation of index
distribution, and are exact for the staircase index optical
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fibers. Computing the group velocity requires relatively
short running time on the computer, because the integra-
tion in the expression for the group velocity can be analyti-
cally obtained with little additional calculation. In the
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The solutions of (2) and (3) are represented rigorously in
terms of Bessel functions, and the longitudinal and cir-
cumferential components of the electromagnetic fields are
expressed as

present paper, the scalar approximate solutions are com- T e
pared numerically with the vector (rigorous) solutions for e’
. . . . A . 0
various modes of propagation in cylindrical fibers of - A,
square-law index distributions. J B,
Qo |=P(r)| . 5)
II. VECTOR MULTILAYER ANALYSIS B’ 1
Since exact analysis for graded-index optical fibers is f"ﬂ h, D,
difficult and time-consuming, appropriate approximation B
techniques have been developed for typical multimode para
Zm(stuir) Zm(siulr) 0 0
mB m:B = B U; ’ E__u—l 7
;Z:Zm(siutr) Ter(sluir) —1’_2——Zm(uir) 7]2 Zm(utr)
P(r)= = 6
(r) 0 0 Z,(u;r) Z (ur) ©)
u.k*n? suk*n? —
S () 7 ) 2L, (ur) -7, ()
i B B nr n’r |

optical fibers. In case the optical fibers have few propaga-
tion modes, the error due to the approximation is of
practical importance for calculating pulse broadening. On
the other hand, the computing time for vector analysis can
be made relatively short because of small numbers of
propagation modes. In this paper, therefore, a method for
calculating exactly the group velocity of propagation modes
is described.

It is assumed that the permittivity é of the fiber depends
only upon the distance r from the axis, and the permeabil-
ity is equal to that of vacuum p,. The permittivity tensor of
the media of optical fibers is assumed to be the form

e, 0 0 en: 0 0
€= 0 €; 0 = 0 fontz 0 (1)
0 0 ¢ 0 0 eon?

The refractive-index profile in the core region is repre-
sented approximately by a stratified multilayer structure.
Eliminating the transverse electromagnetic field from
Maxwell’s equations, we get the following wave equations
in the ith layer:

dzez 1 de, 2122 2 m?

2 +7 ar +{S, (k n;,—f )—7;}@—0 (2)
dzhz 1 dhz 2.9 2 m2
el +{(k n?—B )—7}h2=0 (3)

where k= wfeon,, s,=n,,/n,, and B is a propagation

constant of the guided mode; the longitudinal components

of the electromagnetic fields, i.c., E, and H,, are stated as
E.(r,0) = e.(n){ =m0

sin mé

H,(r,0) = h(r){ SPmEL.

sin m#é

4)

and 4,, B,, C,, and D, are unknown coefficients, 7* = k*n?,
— B2, and Z,, and Z,, are signified as follows:

iyz,=J, Z,=N, foru?>=k’n%—p*>0.
ii)Zm=Im,Z_m=K for_“t2=k2",2,—ﬂz<0.

m

By using (5) and the continuity of the tangential fields e,
h,, eg, and hy at each boundary r=aq, of the layer, the
unknown coefficients in the ith layer can be expressed in
terms of the coefficients in the first layer as follows:

A, 4,
B, B B B
C =P, l(a;—l)Pi—l(ai—l)"'Pz l(al)Pl(al) Ci
D, D,

(7

Since the electromagnetic fields are finite at » =0 and oo,
the coefficients B,, D, Ay, |, Cy., must satisfy

Bi=D =4y, =Cy,1=0 (8)

where the N + 1th layer is the cladding. The relation be-

tween coefficients in the first layer and the cladding is
derived from (7) and (8) as follows:

0 A,
By .1 0
=P
0 c, 9
Dy iy 0
where
Py Py Py Py
p= Py Py Py Py
Py Py, Py Py
Py Py Py Py

(10)

= PI;ﬁl-l(aN)PN(aN)' : 'Pz_l(al)Pl(al)-
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In order that nontrivial solutions of (9) exist
Py Py3 — P3Py =0

(11)
must be satisfied. The propagation constants can be de-
termined by the eigenvalue equation (11), and the coeffi-
cients in each layer can be obtained from (7).

We shall derive next an integral expression for the group
velocity of the guided modes. The variational expression
for the propagation constant is given as [8], [9]

fs(wE*-é-E+wH*-ﬁ-H—jH*-V,XE+jE*-V,><H}ds—jfc{H*xE}'ndl
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/{H*-isz—E*-isz}ds
S

Application of an analogy with the Hellmann-Feynman
theorem [10] yields an exact expression for the group
velocity

J f(iz-(EXH*+E*><H)}ds
aw N

dB_L{E*-%'E*‘H*‘E{%‘L)'H} ds

(13)
whose denominator and numerator indicate the total en-
ergy stored within the unit length of the waveguide and the
time-average power flow along the waveguide, respectively.
This expression can be used not only for isotropic material
but for anisotropic and dispersive material. The refractive-
index of the stratification approximation for analyzing
graded-index waveguides is constant in each layer. There-
fore, the expression for the group velocity, (13), can be
rewritten in the form

LM,

dw i
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dB g ZLI ( )
where C is the velocity of light in vacuum, and
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Since the integration I, can be analytically obtained and
the coefficients (A4,, B,,C,, D,) are given by solving the
eigenvalue equation, the group velocity is determined im-
mediately by using (14) with little additional calculation. In
this vector analysis, calculating the group velocity and the
propagation constant requires relatively short running time
on the computer, which is about twice as large as that in
the scalar multilayer analysis [5].

I, = [(Az

III. NuUMERICAL RESULTS

The scalar approximation solutions of the group velocity
are compared numerically with the results of the vector
multilayer analysis to estimate the accuracy of the scalar
approximation techniques. The form of the refractive-index
function to be considered is given by the following
cladded-parabolic distribution:

n%[1—2A(2)2], r<a

n?(1-2A)=n3,

n(r) = (15)

r>a

where a is the radius of the core, n, and n, the refractive-
indices at the center axis and the cladding of the fiber,
respectively, and A = (n, — n,)/n, represents the relative
refractive-index difference between the core n, (at the
center axis) and the cladding n,. The normalized group
velocity (V,/C —1/n,)/(1/ny, —1/n,) is computed
numerically by the vector rigorous analysis and scalar
approximation analysis [5] for various modes of propaga-
tion and for various normalized frequency T which is
defined by

T2=2k2f

n(r)y>n,

{n(r)2—n§}rdr. (16)
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In both analyses, the permittivity distribution in the core
region is represented approximately by multiple layers of
different constant. In the following numerical evaluation,
the core region is divided into fifty layers. One of the
interesting features obtained from the numerical calcula-
tions is that the error of the normalized group velocity is
approximately proportional to the refractive-index dif-
ference A. Therefore, the estimation of the group velocity
error is given by the following quantity:

Vye/C =V /|
ST (/= 1/m)A 7

where V,,, and V,, indicate the group velocity calculated
by the vector rigorous analysis and the scalar approxima-
tion analysis, respectively. The error due to the multi-
layered approximation for both analyses is of the order of
1072 or less in the case of fifty layers.

Fig. 1 shows the error of the normalized group velocity
versus the normalized frequency T for various HE, EH,
and TM modes. The magnitude of the error decreases as
the frequency increases except near the cutoff region, and
the maximum value of the error e, is about unity. These
results are similar to those for the step-index fiber [2].
Since the characteristic equations for TE modes are the
same for both vector and scalar analyses, TE modes have
no error of the group velocity.

The group velocity differences between the correspond-
ing vector modes for each linearly polarized mode (LP
mode) in the scalar analysis are of importance for design-
ing fibers with few propagation modes, e.g., dual-mode
optical fibers [11]. Fig. 2(a) and (b) shows, respectively, the
group velocity differences between the vector modes equiv-
alent to LP;; and LP,, modes. The value e, in Fig. 2
indicates the normalized group velocity difference divided
by the refractive-index difference A. The group velocity
difference decreases with the frequency T except near the
cutoff region and its maximum value is about unity.

The group velocity error e, for the scalar analysis and
the group velocity difference e, between vector modes
forming a LP mode can be rewritten in the group delay

(18)

where L indicates the propagation distance. At the maxi-
mum value es =1, the group delay e, is evaluated as
v

e./L= %Azes =5.0Xx 10°A%s (ns/km)

follows:
for A=0.01
for A=0.001.

e, /L =0.5(ns/km)
5(ps/km)

Therefore, the maximum group-delay error in the scalar
analysis and the maximum group-delay difference between
the corresponding vector modes for each LP mode are
about 0.5 (ns/km) for typical multimode optical fibers
and 5 (ps/km) for usual single-mode optical fibers. The
delay error and difference become maximum near the
cutoff region. For the practical multimode fibers, modes
near cutoff have little effect on the fiber bandwidth, be-
cause they usually have much loss and little excited power
[5]. It can be concluded that this computation method is
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modes for the linearly polarized modes, (a) LP;; and (b) LPy,. V=2 T
=kany24.

useful for calculating the group delay of modes near cutoff
and the bandwidth of fibers with few propagation modes,
e.g., single-mode fibers and dual-mode fibers [11].
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The square-law index fibers with uniaxial material, which
is caused by the pressure on fibers, are analyzed to clarify
deviations from the group velocity expected for the iso-
tropic square-law index fibers. The refractive-index distri-
bution is assumed to be

n,(r) 0 0 ;
n(r)=1 0 n/(r) 0 (19)
0 0 n,(r)

where

n ()= n%[l—ZA(g)z], r<a
n(1-28) =3,
n,(r)=n,(r)(1+9)

and § indicates the magnitude of anisotropy. The group
velocity of various modes are calculated for anisotropic
fibers with n,=1.5 and A=0.01. Fig. 3 shows the dif-
ference of the group velocity for anisotropic fibers from
that for the isotropic fiber (8 =0). The group velocity
difference e, is expressed as follows:

r>a

€an CI gan gI (20)

where V,,, and ¥, indicate the group velocity for aniso-
tropic and isotropic fibers, respectively. It becomes evident
that the difference e,, increases about linearly with the
magnitude of anisotropy 6. However, HE and EH modes
are not shown in Fig. 3 because of their small group-veloc-
ity differences. The group velocity for TE modes is not
affected by the variation 6 of n,. The group delay dif-
ference e, is expressed as

2
e,/L="Le =75x10%,,(ns/km).  (21)
For 8 = 0.001, the maximum group-delay deviation (e, =
10~%) caused by uniaxial material is about 0.75 (ns/km).
On the basis of this numerical results, we can know the
effect of mechanical stress, e.g., high water pressure, on the

group delay for square-law index fibers.
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IV. CONCLUSIONS

A method for computing exactly the group velocity of
propagation modes in optical fibers is -described. In this
vector analysis, optical fibers can contain uniaxial and
dispersive material, and calculating the group velocity and
the propagation constant requires relatively short running
time on the computer, which is about. twice as large as. that
in scalar analysis. The scalar approximation solutions of
the group velocity are compared numerically with the
results of the vector analysis to estimate the accuracy of the
scalar approximation techniques. The deviation of the group
velocity caused by uniaxial material is analyzed. It has
become evident that this computation method is one of the

~most practical methods to calculate exactly the group

velocity of guided modes.
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Hollow Image Guide and Overlayed Image
Guide Coupler

JING-FENG MIAO anp TATSUO ITOH, FELLOW, IEEE

Abstract —A dielectric waveguide structure, hollow image guide, is
described. This structure has several interesting characteristics useful for
millimeter-wave applications. Dispersion characteristics and field distribu-
tions are theoretically and experimentally studied. The structure can also
be considered as two parallel image guides coupled strongly by a dielectric
overlay. Coupling characteristics between two image guide arms are studied
numerically and experimentally.

1. INTRODUCTION

ECENTLY, increasing attention has been paid to

millimeter-wave circuits made of image-guide struc-
tures (Fig. 1(b)). It is often difficult to create a simple
circuit for some signal processing functions with conven-
tional image guides. Several attempts have been made to
alleviate this difficulty [1], [2]. Both of these attempts
modified the boundary conditions outside the dielectric rod
of the waveguide. The new structure introduced in this
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DAAG29-81-K-0053, and in part by the Joint Services Electronics Pro-
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paper modifies the interior of the dielectric rod. The struc-
ture may be called the hollow image guide (Fig. 1(a)). As
shown in the figure, a portion of the dielectric material is
removed from the rod (e,). The cross section of the hollow
core (€,) has height # and width 2¢. The hollow core may
be filled with another material if needed. The new wave-
guide can be used in conjunction with the techniques in [1]
and [2]. However, the hollow image guide has a number of
interesting features in its own right, making the design
process more flexible. For instance, the hollow core may be
used to control the field distribution outside the dielectric
rod as well as the propagation constant without altering
the exterior dimensions or the dielectric material. Also, by
changing the core height gradually over some distance, we
can create a smooth transition from the image guide to a
solid-state device mounted in a hollow core.

The hollow image guide can also be thought of as two
image guides (II in Fig. 1(a)) strongly coupled by way of a
dielectric (I in Fig. 1(a)) or two image guides of height A
coupled by an overlay of thickness of ¢. The degree of
coupling can be adjusted by changing ¢, &, or b in Fig. 1(a).

In this paper, we study the propagation characteristics
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