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An Exact Analysis of
Propagation Modes

Group Velocity for
in Optical Fibers
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Abstract —A method for calculating exactly the group velocity of propa-

gation modes in opticat fibers is proposed. In this analysis, opticaf fibers

can contain uniaxial and dispersive media. The group velocity obtained by

using the seatar approximate anatysis is compared numerically with the

rigorous group velocity computed by this method for square-law index

opticst fibers.

I. INTRODUCTION

T HE SCALAR approximation method is one of the

most widely used techniques in optical fiber analysis

because of short computing time and simple treatment.

The method, however, has much error in the near cutoff

region [1], [2], and the inaccuracies of group velocity are of

practical importance for the analysis of pulse broadening,

particularly in optical fibers which have few propagation

modes. A method is needed for calculating exactly the
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group velocity of propagation modes in various optical

fibers. There are several approximate methods giving the

group velocity, i.e., a computational method based on the

WKB theory [3], a method using the scalar finite-element

analysis [4], a practical method using the scalar multilayer

analysis [5], and a method with the vector multilayer

analysis and the integral expression for the group velocity

in the scalar analysis [6]. Kharadly [7] calculated the exact

group velocity of the dielectric-tube waveguides constituted

by three layers without material dispersion. To the authors’

knowledge, however, a practical method giving the exact

group velocity has not yet been proposed.

It is the purpose of this paper to describe a method for

computing rigorously the group velocity of propagation

modes in optical fibers without” numerical differentiation,

including uniaxial and dispersive material. The group
velocity is determined by using the vector multilayer ap-

proximation and the integral expression for the group

velocity in vector analysis. The calculated results have only

the error caused by the multilayer approximation of index

distribution, and are exact for the staircase index optical
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fibers. Computing the group velocity requires relatively The solutions of (2) and (3) are represented rigorously in

short running time on the computer, because the integra- terms of Bessel functions, and the longitudinal and cir-

tion in the expression for the group velocity can be analyti- cumferential components of the electromagnetic fields are

tally obtained with little additionrd calculation. In the expressed as

present paper, the scalar approximate solutions are com-

pared numerically with the vector (rigorous) solutions for

various modes of propagation in cylindrical fibers of

square-law index distributions.

II. VECTOR MULTILAYER ANALYSIS

Since exact analysis for graded-index optical fibers is

difficult and time-consuming, appropriate approximation

techniques have been developed for typical multimode where
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optical fibers. In case the optical fibers have few propaga-

tion modes, the error due to the approximation is of

practical importance for calculating pulse broadening. On

the other hand, the computing time for vector analysis can

be made relatively short because of small numbers of

propagation modes. In this paper, therefore, a method for

calculating exactly the group velocity of propagation modes

is described.

It is assumed that the permittivity t of the fiber depends

only upon the distance r from the axis, and the permeabil-

ity is equal to that of vacuum PO. The permittivity tensor of

the media of optical fibers is assumed to be the form

The refractive-index profile in the core region is repre-

sented approximately by a stratified multilayer structure.

Eliminating the transverse electromagnetic field from

Maxwell’s equations, we get the following wave equations

in the i th layer:

where k = u=, s, = n=, /nli, and ~ is a propagation

constant of the guided mode; the longitudinal components

of the electromagnetic fields, i.e., E= and Hz, are stated as

(4)

(5)

(6)

and A,, B,, C,, and ~i are unknown coefficients, q2 = k2n~l

– /32, and Z~ and Z~ are signified as follows:

i)Zm=J~,~.=N~ for u:= k2n~i–j32 >0.
—

ii) Z~ = 1~, Z~ =K~ for –uf=k2nf, –f12<0.

By using (5) and the continuity of the tangential fields e=,

h=, e~, and ho at each boundary r = a, of the layer, the

unknown coefficients in the i th layer can be expressed in

terms of the coefficients in the first layer as follows:
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Since the electromagnetic fields are finite at r = O and co,

the coefficients B,, D1, AN+,, C~+ ~ must satisfy

B1=D, =A~+l=C~+l=O (8)

where the N + 1th layer is the cladding. The relation be-

tween coefficients in the first layer and the cladding is

derived from (7) and (8) as follows:

[H]
o Al

B N+ 1

0
=P 0

c,
D N+l o

where

[1
P,, P,2 P,3 P,4

P2, P22 P23 P24
P=

P3, P32 P33 P34

P41 P~~ P43 Pa

=P;~l(aN)PN(aN) ””. P; ’(al) P1(al).

(9)

(lo)



1823MORISHITA et a[.: EXACT ANALYSIS OF GROUP VELOCITY

In order that nontrivial solutions of (9) exist

P,,P33 – P,3P3, = o

must be satisfied. The propagation constants

(11)

can be de-

dn,,
N,, =n~, –2ntiA—

Nz,=n~, -2nz,A~

termined by the eigenvalue equation (11), and the coeffi-
U{i

cients in each layer can be obtained from (7).

We shall derive next an integral expression for the group

llZ=~al {A1Z~(~i~ir)+Bi~~(~itiir)}2~dr
u,–,

velocity of the guided modes. The variational expression 12, s/”’ {C, Z~(u,r)+DZZ~(u, r)}2rdr
for the propagation constant is given as [8], [9] U,_,
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Application of an analogy with the Hellmann-Feynman

theorem [10] yields an exact expression for the group

velocity
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whose denominator and numerator indicate the total en-

ergy stored within the unit length of the waveguide and the

time-average power flow along the waveguide, respectively.

This expression can be used not only for isotropic material

- but for anisotropic and dispersive material. The refractive-

index of the stratification approximation for analyzing

graded-index waveguides is constant in each layer. There-

fore, the expression for the group velocity, (13), can be

rewritten in the form

(14)

i

where C is the velocity of light in vacuum, and

1~,= [{/l, zm(~iZ41r)+‘izm(Szuir)}

Since the integration lj, can be analytically obtained and

the coefficients (AZ, B,, Cl, D,) are given by solving the

eigenvalue equation, the group velocity is determined im-

mediately by using ( 14) with little additional calculation. In

this vector analysis, calculating the group velocity and the

propagation constant requires relatively short running time

on the computer, which is about twice as large as that in

the scalar multilayer analysis [5].

III. NUMERICAL RESULTS

The scalar approximation solutions of the group velocity

are compared numerically with the results of the vector

multilayer analysis to estimate the accuracy of the scalar

approximation techniques. The form of the refractive-index

function to be considered is given by the following

cladded-parabolic distribution:

where a is the radius of the core, n ~ and n ~ the refractive-

indices at the center axis and the cladding of the fiber,

respectively, and A = (n ~– n‘ )/n ~ represents the relative

refractive-index difference between the core n, (at the

center axis) and the cladding n‘. The normalized group

velocity (Vg/C – l/nl)/(1/n2 – I/nl) is computed
numerically by the vector rigorous analysis and scalar

approximation analysis [5] for various modes of propaga-

tion and for various normalized frequency T which is

defined by

T2=2k2~ {n(r)’- n~}rdr.
n(r)> n2

(16)
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In both analyses, the permittivity distribution in the core

region is represented approximately by multiple layers of

different constant. In the following numerical evaluation,

the core region is divided into fifty layers. One of the

interesting features obtained from the numerical calcula-

tions is that the error of the normalized group velocity is

approximately proportional to the refractive-index dif-

ference A. Therefore, the estimation of the group velocity

error is given by the following quantity:

l~g,/c - ~,ex/cl 1,-l\

‘S= (;/n, -l;nl)A
(1/)

where V~,X and Vg, indicate the group velocity calculated

by the vector rigorous analysis and the scalar approxima-

tion analysis, respectively. The error due to the multi-

layered approximation for both analyses is of the order of

10-3 or less in the case of fifty layers.

Fig. 1 shows the error of the normalized group velocity

versus the normalized frequency T for various HE, EH,

and TM modes. The magnitude of the error decreases as

the frequency increases except near the cutoff region, and

the maximum value of the error e, is about unity. These

results are similar to those for the step-index fiber [2].

Since the characteristic equations for TE modes are the

same for both vector and scalar analyses, TE modes have

no error of the group velocity.

The group velocity differences between the correspond-

ing vector modes for each linearly polarized mode (LP

mode) in the scalar analysis are of importance for design-

ing fibers with few propagation modes, e.g., dual-mode

optical fibers [11 ]. Fig. 2(a) and (b) shows, respectively, the

group velocity differences between the vector modes equiv-

alent to LPI, and LPZ1 modes. The value eO in Fig. 2

indicates the normalized group velocity difference divided

by the refractive-index difference A. The group velocity

difference decreases with the frequency T except near the

cutoff region and its maximum value is about unity.

The group velocity error e, for the scalar analysis and

the group velocity difference e. between vector modes

forming a LP mode can be rewritten in the group delay

e, /L = ~ A2e~ = 5.0x 103A2e: (ns/km) (18)

where L indicates the propagation distance. At the maxi-

mum value es = 1, the group delay e, is evaluated as
o

follows:

eT/L = 0.5(ns/km) for A = 0.01

5(ps/km) for A = 0.001.

Therefore, the maximum group-delay error in the scalar

analysis and the maximum group-delay difference between

the corresponding vector modes for each LP mode are

about 0.5 (ns/km) for typical multimode optical fibers

and 5 (ps/km) for usual single-mode optical fibers. The

delay error and difference become maximum near the

cutoff region. For the practical multimode fibers, modes

near cutoff have little effect on the fiber bandwidth, be-

cause they usually have much loss and little excited power

(51. It can be concluded that this comtmtation method is
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Fig. 1. The error in the group velocity due to the scalar approximation

for (a) HEml mode, (b) EHml mode, and (c) TMon mode. V= AT =
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useful for calculating the group delay of modes near cutoff

and the bandwidth of fibers with few propagation modes,

e.g.. simzle-mode fibers and dual-mode fibers [111.
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Fig. 3. The group-velocity deviations caused by uniaxial material. V
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The square-law index fibers with uniaxial material, which

is caused by the pressure on fibers, are analyzed to clarify

deviations from the group velocity expected for the iso-

tropic square-law index fibers. The refractive-index distri-

bution is assumed to be

‘(r)=l”’r‘~r)l“)] ‘1’)
where

(d(l-2A)=ni, r>~

nz(r)=n, (r)(l+~)

Wd 8 indicates the magnitude of anikotropy. The group

velocity of various modes are calculated for anisotropic

fibers with n,= 1.5 and A = 0.01. Fig. 3 shows the dif-

ference of the group velocity for anisotropic fibers from

that for the isotropic fiber (8 = O). The group velocity
difference ea. is expressed as follows:

ean ~v= c1 gan–vgl (20)

where V~an and ~g indicate the group velocity for aniso-

tropic and isotropic fibers, respectively. It becomes evident

that the difference ea. increases about linearly with the

magnitude of anisotropy 8. However, HE and EH modes

are not shown in Fig. 3 because of their small group-veloc-

it y differences. The group velocity for TE modes is not

affected by the variation 8 of n,. The group delay dif-

ference e, is expressed as

~ ~.= 7.5X 103ea. (ns/km).e,/L = ‘e (21)

For rS= 0.001, the maximum group-delay deviation (ea. =

10-4) caused by uniaxial material is about 0.75 (ns/km).

On the basis of this numerical results, we can know the

effect of mechanical stress, e.g., high water pressure, on the

group delay for square-law index fibers.

IV. CONCLUSIONS

A method for computing exactly the group velocity of

propagation modes in optical fibers is described. In this

vector analysis, optical fibers can contain uniaxial and

dispersive material, and calculating the group velocity and

the propagation constant requires relatively short running

time on the computer, which is about twice as large as that

in scalar analysis. The scalar approximation solutions of

the group velocity are compared numerically with the

results of the vector analysis to estimate the accuracy of the

scalar approximation techniques. The deviation of the group

velocity caused by uniaxial material is analyzed. It has

become evident that this computation method is one of the

most practical methods to calculate exactly the group

velocity of guided modes.
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OverlayedImage Guide and—
Guide Coupler

Image
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Abstract —A dielectric wavegnide structure, hollow image guide, is

described. This structure has severaf interesting characteristics useful for
millimeter-wave applications.Dispersion characteristicsand field dMribu-
tions are theoretically and experimentally studied. The structure can afso

be considered as two parallel image guides coupled strongly by a dielectric

overlay. Coupling characteristics between two image guidearmsare studied

numerically and experimentally.

I. INTRODUCTION

R ECENTLY, increasing attention has been paid to

millimeter-wave circuits made of image-guide struc-

tures (Fig. 1(b)). It is often difficult to create a simple

circuit for some signal processing functions with conven-
tional image guides. Several attempts have been made to

alleviate this difficulty [1], [2]. Both of these attempts

modified the boundary conditions outside the dielectric rod

of the waveguide. The new structure introduced in this
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paper modifies the interior of the dielectric rod. The struc-

ture may be called the hollow image guide (Fig. 1(a)). As

shown in the figure, a portion of the dielectric material is

removed from the rod (6 ~). The cross section of the hollow

core (c, ) has height h and width 2 c. The hollow core may

be filled with another material if needed. The new wave-

guide can be used in conjunction with the techniques in [1]

and [2]. However, the hollow image guide has a number of

interesting features in its own right, making the design

process more flexible. For instance, the hollow core may be

used to control the field distribution outside the dielectric

rod as well as the propagation constant without altering

the exterior dimensions or the dielectric material. Also, by

changing the core height gradually over some distance, we

can create a smooth transition from the image guide to a

solid-state device mounted in a hollow core.

The hollow image guide can also be thought of as two

image guides (II in Fig. 1(a)) strongly coupled by way of a

dielectric (I in Fig. l(a)) or two image guides of height h

coupled by an overlay of thickness of t. The degree of

coupling can be adjusted by changing c, h, or bin Fig. 1(a).

In this paper, we study the propagation characteristics
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